Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Cochrane Database Syst Rev ; 1: CD013530, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189494

RESUMEN

BACKGROUND: Burn damage to skin often results in scarring; however in some individuals the failure of normal wound-healing processes results in excessive scar tissue formation, termed 'hypertrophic scarring'. The most commonly used method for the prevention and treatment of hypertrophic scarring is pressure-garment therapy (PGT). PGT is considered standard care globally; however, there is continued uncertainty around its effectiveness. OBJECTIVES: To evaluate the benefits and harms of pressure-garment therapy for the prevention of hypertrophic scarring after burn injury. SEARCH METHODS: We used standard, extensive Cochrane search methods. We searched CENTRAL, MEDLINE, Embase, two other databases, and two trials registers on 8 June 2023 with reference checking, citation searching, and contact with study authors to identify additional studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) comparing PGT (alone or in combination with other scar-management therapies) with scar management therapies not including PGT, or comparing different PGT pressures or different types of PGT. DATA COLLECTION AND ANALYSIS: At least two review authors independently selected trials for inclusion using predetermined inclusion criteria, extracted data, and assessed risk of bias using the Cochrane RoB 1 tool. We assessed the certainty of evidence using GRADE. MAIN RESULTS: We included 15 studies in this review (1179 participants), 14 of which (1057 participants) presented useable data. The sample size of included studies ranged from 17 to 159 participants. Most studies included both adults and children. Eight studies compared a pressure garment (with or without another scar management therapy) with scar management therapy alone, five studies compared the same pressure garment at a higher pressure versus a lower pressure, and two studies compared two different types of pressure garments. Studies used a variety of pressure garments (e.g. in-house manufactured or a commercial brand). Types of scar management therapies included were lanolin massage, topical silicone gel, silicone sheet/dressing, and heparin sodium ointment. Meta-analysis was not possible as there was significant clinical and methodological heterogeneity between studies. Main outcome measures were scar improvement assessed using the Vancouver Scar Scale (VSS) or the Patient and Observer Scar Assessment Scale (POSAS) (or both), pain, pruritus, quality of life, adverse events, and adherence to therapy. Studies additionally reported a further 14 outcomes, mostly individual scar parameters, some of which contributed to global scores on the VSS or POSAS. The amount of evidence for each individual outcome was limited. Most studies had a short follow-up, which may have affected results as the full effect of any therapy on scar healing may not be seen until around 18 months. PGT versus no treatment/lanolin We included five studies (378 participants). The evidence is very uncertain on whether PGT improves scars as assessed by the VSS compared with no treatment/lanolin. The evidence is also very uncertain for pain, pruritus, adverse events, and adherence. No study used the POSAS or assessed quality of life. One additional study (122 participants) did not report useable data. PGT versus silicone We included three studies (359 participants). The evidence is very uncertain on the effect of PGT compared with silicone, as assessed by the VSS and POSAS. The evidence is also very uncertain for pain, pruritus, quality of life, adverse events, adherence, and other scar parameters. It is possible that silicone may result in fewer adverse events or better adherence compared with PGT but this was also based on very low-certainty evidence. PGT plus silicone versus no treatment/lanolin We included two studies (200 participants). The evidence is very uncertain on whether PGT plus silicone improves scars as assessed by the VSS compared with no treatment/lanolin. The evidence is also very uncertain for pain, pruritus, and adverse events. No study used the POSAS or assessed quality of life or adherence. PGT plus silicone versus silicone We included three studies (359 participants). The evidence is very uncertain on the effect of PGT plus silicone compared with silicone, as assessed by the VSS and POSAS. The evidence is also very uncertain for pain, pruritus, quality of life, adverse events, and adherence. PGT plus scar management therapy including silicone versus scar management therapy including silicone We included one study (88 participants). The evidence is very uncertain on the effect of PGT plus scar management therapy including silicone versus scar management therapy including silicone, as assessed by the VSS and POSAS. The evidence is also very uncertain for pain, pruritus, quality of life, adverse events, and adherence. High-pressure versus low-pressure garments We included five studies (262 participants). The evidence is very uncertain on the effect of high pressure versus low pressure PGT on adverse events and adherence. No study used the VSS or the POSAS or assessed pain, pruritus, or quality of life. Different types of PGT (Caroskin Tricot + an adhesive silicone gel sheet versus Gecko Nanoplast (silicone gel bandage)) We included one study (60 participants). The evidence is very uncertain on the effect of Caroskin Tricot versus Gecko Nanoplast on the POSAS, pain, pruritus, and adverse events. The study did not use the VSS or assess quality of life or adherence. Different types of pressure garments (Jobst versus Tubigrip) We included one study (110 participants). The evidence is very uncertain on the adherence to either Jobst or Tubigrip. This study did not report any other outcomes. AUTHORS' CONCLUSIONS: There is insufficient evidence to recommend using either PGT or an alternative for preventing hypertrophic scarring after burn injury. PGT is already commonly used in practice and it is possible that continuing to do so may provide some benefit to some people. However, until more evidence becomes available, it may be appropriate to allow patient preference to guide therapy.


Asunto(s)
Quemaduras , Cicatriz , Adulto , Niño , Humanos , Cicatriz/etiología , Cicatriz/prevención & control , Lanolina , Geles de Silicona/uso terapéutico , Quemaduras/complicaciones , Quemaduras/terapia , Dolor , Prurito/etiología , Prurito/prevención & control
2.
Rev. panam. salud pública ; 48: e13, 2024. tab, graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1536672

RESUMEN

resumen está disponible en el texto completo


ABSTRACT The CONSORT 2010 statement provides minimum guidelines for reporting randomized trials. Its widespread use has been instrumental in ensuring transparency in the evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate impact on health outcomes. The CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trials evaluating interventions with an AI component. It was developed in parallel with its companion statement for clinical trial protocols: SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 29 candidate items, which were assessed by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a two-day consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The CONSORT-AI extension includes 14 new items that were considered sufficiently important for AI interventions that they should be routinely reported in addition to the core CONSORT 2010 items. CONSORT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention is integrated, the handling of inputs and outputs of the AI intervention, the human-AI interaction and provision of an analysis of error cases. CONSORT-AI will help promote transparency and completeness in reporting clinical trials for AI interventions. It will assist editors and peer reviewers, as well as the general readership, to understand, interpret and critically appraise the quality of clinical trial design and risk of bias in the reported outcomes.


RESUMO A declaração CONSORT 2010 apresenta diretrizes mínimas para relatórios de ensaios clínicos randomizados. Seu uso generalizado tem sido fundamental para garantir a transparência na avaliação de novas intervenções. Recentemente, tem-se reconhecido cada vez mais que intervenções que incluem inteligência artificial (IA) precisam ser submetidas a uma avaliação rigorosa e prospectiva para demonstrar seus impactos sobre os resultados de saúde. A extensão CONSORT-AI (Consolidated Standards of Reporting Trials - Artificial Intelligence) é uma nova diretriz para relatórios de ensaios clínicos que avaliam intervenções com um componente de IA. Ela foi desenvolvida em paralelo à sua declaração complementar para protocolos de ensaios clínicos, a SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials - Artificial Intelligence). Ambas as diretrizes foram desenvolvidas por meio de um processo de consenso em etapas que incluiu revisão da literatura e consultas a especialistas para gerar 29 itens candidatos. Foram feitas consultas sobre esses itens a um grupo internacional composto por 103 interessados diretos, que participaram de uma pesquisa Delphi em duas etapas. Chegou-se a um acordo sobre os itens em uma reunião de consenso que incluiu 31 interessados diretos, e os itens foram refinados por meio de uma lista de verificação piloto que envolveu 34 participantes. A extensão CONSORT-AI inclui 14 itens novos que, devido à sua importância para as intervenções de IA, devem ser informados rotineiramente juntamente com os itens básicos da CONSORT 2010. A CONSORT-AI preconiza que os pesquisadores descrevam claramente a intervenção de IA, incluindo instruções e as habilidades necessárias para seu uso, o contexto no qual a intervenção de IA está inserida, considerações sobre o manuseio dos dados de entrada e saída da intervenção de IA, a interação humano-IA e uma análise dos casos de erro. A CONSORT-AI ajudará a promover a transparência e a integralidade nos relatórios de ensaios clínicos com intervenções que utilizam IA. Seu uso ajudará editores e revisores, bem como leitores em geral, a entender, interpretar e avaliar criticamente a qualidade do desenho do ensaio clínico e o risco de viés nos resultados relatados.

3.
Rev. panam. salud pública ; 48: e12, 2024. tab, graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1536674

RESUMEN

resumen está disponible en el texto completo


ABSTRACT The SPIRIT 2013 statement aims to improve the completeness of clinical trial protocol reporting by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trial protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 26 candidate items, which were consulted upon by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items that were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations for the handling of input and output data, the human-AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer reviewers, as well as the general readership, to understand, interpret and critically appraise the design and risk of bias for a planned clinical trial.


RESUMO A declaração SPIRIT 2013 tem como objetivo melhorar a integralidade dos relatórios dos protocolos de ensaios clínicos, fornecendo recomendações baseadas em evidências para o conjunto mínimo de itens que devem ser abordados. Essas orientações têm sido fundamentais para promover uma avaliação transparente de novas intervenções. Recentemente, tem-se reconhecido cada vez mais que intervenções que incluem inteligência artificial (IA) precisam ser submetidas a uma avaliação rigorosa e prospectiva para demonstrar seus impactos sobre os resultados de saúde. A extensão SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials - Artificial Intelligence) é uma nova diretriz de relatório para protocolos de ensaios clínicos que avaliam intervenções com um componente de IA. Essa diretriz foi desenvolvida em paralelo à sua declaração complementar para relatórios de ensaios clínicos, CONSORT-AI (Consolidated Standards of Reporting Trials - Artificial Intelligence). Ambas as diretrizes foram desenvolvidas por meio de um processo de consenso em etapas que incluiu revisão da literatura e consultas a especialistas para gerar 26 itens candidatos. Foram feitas consultas sobre esses itens a um grupo internacional composto por 103 interessados diretos, que participaram de uma pesquisa Delphi em duas etapas. Chegou-se a um acordo sobre os itens em uma reunião de consenso que incluiu 31 interessados diretos, e os itens foram refinados por meio de uma lista de verificação piloto que envolveu 34 participantes. A extensão SPIRIT-AI inclui 15 itens novos que foram considerados suficientemente importantes para os protocolos de ensaios clínicos com intervenções que utilizam IA. Esses itens novos devem constar dos relatórios de rotina, juntamente com os itens básicos da SPIRIT 2013. A SPIRIT-AI preconiza que os pesquisadores descrevam claramente a intervenção de IA, incluindo instruções e as habilidades necessárias para seu uso, o contexto no qual a intervenção de IA será integrada, considerações sobre o manuseio dos dados de entrada e saída, a interação humano-IA e a análise de casos de erro. A SPIRIT-AI ajudará a promover a transparência e a integralidade nos protocolos de ensaios clínicos com intervenções que utilizam IA. Seu uso ajudará editores e revisores, bem como leitores em geral, a entender, interpretar e avaliar criticamente o delineamento e o risco de viés de um futuro estudo clínico.

4.
Lancet Microbe ; 4(11): e875-e882, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37844595

RESUMEN

BACKGROUND: Rapid antigen tests (RATs) were crucial during the COVID-19 pandemic. Information provided by the test manufacturer in product package inserts, also known as instructions for use (IFUs), is often the only data available to clinicians, public health professionals, and individuals on the diagnostic accuracy of these tests. We aimed to assess whether manufacturer IFU accuracy data aligned with evidence from independent research. METHODS: We searched company websites for package inserts for RATs that were included in the July 2022 update of the Cochrane meta-analysis of SARS-CoV-2 RATs, which served as a benchmark for research evidence. We fitted bivariate hierarchical models to obtain absolute differences in sensitivity and specificity between IFU and Cochrane Review estimates for each test, as well as overall combined differences. FINDINGS: We found 22 (100%) of 22 IFUs of the RATs included in the Cochrane Review. IFUs for 12 (55%) of 22 RATs reported statistically significantly higher sensitivity estimates than the Cochrane Review, and none reported lower estimates. The mean difference between IFU and Cochrane Review sensitivity estimates across tests was 12·0% (95% CI 7·5-16·6). IFUs in three (14%) of 22 diagnostic tests had significantly higher specificity estimates than the Cochrane Review and two (9%) of 22 had lower estimates. The mean difference between IFU and Cochrane Review specificity estimates across tests was 0·3% (95% CI 0·1-0·5). If 100 people with SARS-CoV-2 infection were tested with each of the tests in this study, on average 12 fewer people would be correctly diagnosed than is suggested by the package inserts. INTERPRETATION: Health professionals and the public should be aware that package inserts for SARS-CoV-2 RATs might provide an overly optimistic picture of the sensitivity of a test. Regulatory bodies should strengthen their requirements for the reporting of diagnostic accuracy data in package inserts and policy makers should demand independent validation data for decision making. FUNDING: None.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , Etiquetado de Productos , Sensibilidad y Especificidad , Revisiones Sistemáticas como Asunto
6.
Lancet ; 401(10390): 1798-1809, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37116524

RESUMEN

BACKGROUND: Chronic limb-threatening ischaemia is the severest manifestation of peripheral arterial disease and presents with ischaemic pain at rest or tissue loss (ulceration, gangrene, or both), or both. We compared the effectiveness of a vein bypass first with a best endovascular treatment first revascularisation strategy in terms of preventing major amputation and death in patients with chronic limb threatening ischaemia who required an infra-popliteal, with or without an additional more proximal infra-inguinal, revascularisation procedure to restore limb perfusion. METHODS: Bypass versus Angioplasty for Severe Ischaemia of the Leg (BASIL)-2 was an open-label, pragmatic, multicentre, phase 3, randomised trial done at 41 vascular surgery units in the UK (n=39), Sweden (n=1), and Denmark (n=1). Eligible patients were those who presented to hospital-based vascular surgery units with chronic limb-threatening ischaemia due to atherosclerotic disease and who required an infra-popliteal, with or without an additional more proximal infra-inguinal, revascularisation procedure to restore limb perfusion. Participants were randomly assigned (1:1) to receive either vein bypass (vein bypass group) or best endovascular treatment (best endovascular treatment group) as their first revascularisation procedure through a secure online randomisation system. Participants were excluded if they had ischaemic pain or tissue loss considered not to be primarily due to atherosclerotic peripheral artery disease. Most vein bypasses used the great saphenous vein and originated from the common or superficial femoral arteries. Most endovascular interventions comprised plain balloon angioplasty with selective use of plain or drug eluting stents. Participants were followed up for a minimum of 2 years. Data were collected locally at participating centres. In England, Wales, and Sweden, centralised databases were used to collect information on amputations and deaths. Data were analysed centrally at the Birmingham Clinical Trials Unit. The primary outcome was amputation-free survival defined as time to first major (above the ankle) amputation or death from any cause measured in the intention-to-treat population. Safety was assessed by monitoring serious adverse events up to 30-days after first revascularisation. The trial is registered with the ISRCTN registry, ISRCTN27728689. FINDINGS: Between July 22, 2014, and Nov 30, 2020, 345 participants (65 [19%] women and 280 [81%] men; median age 72·5 years [62·7-79·3]) with chronic limb-threatening ischaemia were enrolled in the trial and randomly assigned: 172 (50%) to the vein bypass group and 173 (50%) to the best endovascular treatment group. Major amputation or death occurred in 108 (63%) of 172 patients in the vein bypass group and 92 (53%) of 173 patients in the best endovascular treatment group (adjusted hazard ratio [HR] 1·35 [95% CI 1·02-1·80]; p=0·037). 91 (53%) of 172 patients in the vein bypass group and 77 (45%) of 173 patients in the best endovascular treatment group died (adjusted HR 1·37 [95% CI 1·00-1·87]). In both groups the most common causes of morbidity and death, including that occurring within 30 days of their first revascularisation, were cardiovascular (61 deaths in the vein bypass group and 49 in the best endovascular treatment group) and respiratory events (25 deaths in the vein bypass group and 23 in the best endovascular treatment group; number of cardiovascular and respiratory deaths were not mutually exclusive). INTERPRETATION: In the BASIL-2 trial, a best endovascular treatment first revascularisation strategy was associated with a better amputation-free survival, which was largely driven by fewer deaths in the best endovascular treatment group. These data suggest that more patients with chronic limb-threatening ischaemia who required an infra-popliteal, with or without an additional more proximal infra-inguinal, revascularisation procedure to restore limb perfusion should be considered for a best endovascular treatment first revascularisation strategy. FUNDING: UK National Institute of Health Research Health Technology Programme.


Asunto(s)
Angioplastia Coronaria con Balón , Ocimum basilicum , Enfermedad Arterial Periférica , Masculino , Humanos , Femenino , Anciano , Isquemia Crónica que Amenaza las Extremidades , Isquemia/cirugía , Enfermedad Arterial Periférica/complicaciones , Enfermedad Arterial Periférica/cirugía , Factores de Riesgo , Perfusión , Dolor , Resultado del Tratamiento
7.
BMJ Open ; 13(4): e070280, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019486

RESUMEN

INTRODUCTION: Prostate MRI is a well-established tool for the diagnostic work-up for men with suspected prostate cancer (PCa). Current recommendations advocate the use of multiparametric MRI (mpMRI), which is composed of three sequences: T2-weighted sequence (T2W), diffusion-weighted sequence (DWI) and dynamic contrast-enhanced sequence (DCE). Prior studies suggest that a biparametric MRI (bpMRI) approach, omitting the DCE sequences, may not compromise clinically significant cancer detection, though there are limitations to these studies, and it is not known how this may affect treatment eligibility. A bpMRI approach will reduce scanning time, may be more cost-effective and, at a population level, will allow more men to gain access to an MRI than an mpMRI approach. METHODS: Prostate Imaging Using MRI±Contrast Enhancement (PRIME) is a prospective, international, multicentre, within-patient diagnostic yield trial assessing whether bpMRI is non-inferior to mpMRI in the diagnosis of clinically significant PCa. Patients will undergo the full mpMRI scan. Radiologists will be blinded to the DCE and will initially report the MRI using only the bpMRI (T2W and DWI) sequences. They will then be unblinded to the DCE sequence and will then re-report the MRI using the mpMRI sequences (T2W, DWI and DCE). Men with suspicious lesions on either bpMRI or mpMRI will undergo prostate biopsy. The main inclusion criteria are men with suspected PCa, with a serum PSA of ≤20 ng/mL and without prior prostate biopsy. The primary outcome is the proportion of men with clinically significant PCa detected (Gleason score ≥3+4 or Gleason grade group ≥2). A sample size of at least 500 patients is required. Key secondary outcomes include the proportion of clinically insignificant PCa detected and treatment decision. ETHICS AND DISSEMINATION: Ethical approval was obtained from the National Research Ethics Committee West Midlands, Nottingham (21/WM/0091). Results of this trial will be disseminated through peer-reviewed publications. Participants and relevant patient support groups will be informed about the results of the trial. TRIAL REGISTRATION NUMBER: NCT04571840.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Masculino , Humanos , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Estudios Prospectivos , Neoplasias de la Próstata/diagnóstico , Imagen por Resonancia Magnética/métodos , Biopsia , Estudios Multicéntricos como Asunto
8.
J Geriatr Phys Ther ; 46(2): E87-E105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34392264

RESUMEN

BACKGROUND: Although the pharmacological approach may help with motor symptoms in Parkinson's disease (PD), they are clearly not the complete solution. Thus, for the treatment of PD motor symptoms, physical activity has been proposed as an effective intervention. METHODS: A systematic search in MEDLINE, Web of Science, Scopus, and Cochrane Central Register of Controlled Trials databases was conducted to identify randomized controlled trials testing the effectiveness of exercise interventions on motor symptoms of PD. Physical exercise interventions were divided into 9 categories: endurance, resistance, combined, balance, dance, alternative exercises, body weight supported, sensorimotor interventions including endurance exercise, and sensorimotor interventions not including endurance exercise. A pairwise meta-analysis for direct and indirect comparisons between intervention and control/nonintervention groups was carried out. RESULTS: Fifty-six studies met the inclusion criteria, including 2740 participants, aged between 57.6 and 77.7 years. Results showed that sensorimotor training including endurance (effect size [ES]-1.09; 95% confidence interval [CI], -1.68 to -0.50), resistance (ES-0.82; 95% CI, -1.23 to -0.41), and dance (ES-0.64; 95% CI, -1.24 to -0.05) were the most effective physical activity interventions for mitigating PD motor symptoms. CONCLUSION: Physical activity interventions are an effective strategy for the management of motor symptoms in patients with PD. Among the different exercise intervention programs, those including more complex and demanding activities (sensorimotor training including endurance, resistance, and dance) seem to be the most effective physical activity interventions.


Asunto(s)
Enfermedad de Parkinson , Humanos , Anciano , Metaanálisis en Red , Ejercicio Físico , Terapia por Ejercicio/métodos , Peso Corporal
9.
Rev. panam. salud pública ; 47: e149, 2023. tab, graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1536665

RESUMEN

resumen está disponible en el texto completo


ABSTRACT The SPIRIT 2013 statement aims to improve the completeness of clinical trial protocol reporting by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trial protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 26 candidate items, which were consulted upon by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items that were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations for the handling of input and output data, the human-AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer reviewers, as well as the general readership, to understand, interpret and critically appraise the design and risk of bias for a planned clinical trial.


RESUMO A declaração SPIRIT 2013 tem como objetivo melhorar a integralidade dos relatórios dos protocolos de ensaios clínicos, fornecendo recomendações baseadas em evidências para o conjunto mínimo de itens que devem ser abordados. Essas orientações têm sido fundamentais para promover uma avaliação transparente de novas intervenções. Recentemente, tem-se reconhecido cada vez mais que intervenções que incluem inteligência artificial (IA) precisam ser submetidas a uma avaliação rigorosa e prospectiva para demonstrar seus impactos sobre os resultados de saúde. A extensão SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials - Artificial Intelligence) é uma nova diretriz de relatório para protocolos de ensaios clínicos que avaliam intervenções com um componente de IA. Essa diretriz foi desenvolvida em paralelo à sua declaração complementar para relatórios de ensaios clínicos, CONSORT-AI (Consolidated Standards of Reporting Trials - Artificial Intelligence). Ambas as diretrizes foram desenvolvidas por meio de um processo de consenso em etapas que incluiu revisão da literatura e consultas a especialistas para gerar 26 itens candidatos. Foram feitas consultas sobre esses itens a um grupo internacional composto por 103 interessados diretos, que participaram de uma pesquisa Delphi em duas etapas. Chegou-se a um acordo sobre os itens em uma reunião de consenso que incluiu 31 interessados diretos, e os itens foram refinados por meio de uma lista de verificação piloto que envolveu 34 participantes. A extensão SPIRIT-AI inclui 15 itens novos que foram considerados suficientemente importantes para os protocolos de ensaios clínicos com intervenções que utilizam IA. Esses itens novos devem constar dos relatórios de rotina, juntamente com os itens básicos da SPIRIT 2013. A SPIRIT-AI preconiza que os pesquisadores descrevam claramente a intervenção de IA, incluindo instruções e as habilidades necessárias para seu uso, o contexto no qual a intervenção de IA será integrada, considerações sobre o manuseio dos dados de entrada e saída, a interação humano-IA e a análise de casos de erro. A SPIRIT-AI ajudará a promover a transparência e a integralidade nos protocolos de ensaios clínicos com intervenções que utilizam IA. Seu uso ajudará editores e revisores, bem como leitores em geral, a entender, interpretar e avaliar criticamente o delineamento e o risco de viés de um futuro estudo clínico.

11.
Cochrane Database Syst Rev ; 11: CD013652, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36394900

RESUMEN

BACKGROUND: The diagnostic challenges associated with the COVID-19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS-CoV-2 infection. Serology tests to detect the presence of antibodies to SARS-CoV-2 enable detection of past infection and may detect cases of SARS-CoV-2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS-CoV-2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS-CoV-2 epidemiology. OBJECTIVES: To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS-CoV-2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS-CoV-2. Sources of heterogeneity investigated included: timing of test, test method, SARS-CoV-2 antigen used, test brand, and reference standard for non-SARS-CoV-2 cases. SEARCH METHODS: The COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) 'COVID-19: Living map of the evidence' and the Norwegian Institute of Public Health 'NIPH systematic and living map on COVID-19 evidence'. We did not apply language restrictions. SELECTION CRITERIA: We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT-PCR test. Small studies with fewer than 25 SARS-CoV-2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR), clinical diagnostic criteria, and pre-pandemic samples). DATA COLLECTION AND ANALYSIS: We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS-2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta-analysis, we fitted univariate random-effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and summarised results for tests that were evaluated in 200 or more samples and that met a modification of UK Medicines and Healthcare products Regulatory Agency (MHRA) target performance criteria. MAIN RESULTS: We included 178 separate studies (described in 177 study reports, with 45 as pre-prints) providing 527 test evaluations. The studies included 64,688 samples including 25,724 from people with confirmed SARS-CoV-2; most compared the accuracy of two or more assays (102/178, 57%). Participants with confirmed SARS-CoV-2 infection were most commonly hospital inpatients (78/178, 44%), and pre-pandemic samples were used by 45% (81/178) to estimate specificity. Over two-thirds of studies recruited participants based on known SARS-CoV-2 infection status (123/178, 69%). All studies were conducted prior to the introduction of SARS-CoV-2 vaccines and present data for naturally acquired antibody responses. Seventy-nine percent (141/178) of studies reported sensitivity by week after symptom onset and 66% (117/178) for convalescent phase infection. Studies evaluated enzyme-linked immunosorbent assays (ELISA) (165/527; 31%), chemiluminescent assays (CLIA) (167/527; 32%) or lateral flow assays (LFA) (188/527; 36%). Risk of bias was high because of participant selection (172, 97%); application and interpretation of the index test (35, 20%); weaknesses in the reference standard (38, 21%); and issues related to participant flow and timing (148, 82%). We judged that there were high concerns about the applicability of the evidence related to participants in 170 (96%) studies, and about the applicability of the reference standard in 162 (91%) studies. Average sensitivities for current SARS-CoV-2 infection increased by week after onset for all target antibodies. Average sensitivity for the combination of either IgG or IgM was 41.1% in week one (95% CI 38.1 to 44.2; 103 evaluations; 3881 samples, 1593 cases), 74.9% in week two (95% CI 72.4 to 77.3; 96 evaluations, 3948 samples, 2904 cases) and 88.0% by week three after onset of symptoms (95% CI 86.3 to 89.5; 103 evaluations, 2929 samples, 2571 cases). Average sensitivity during the convalescent phase of infection (up to a maximum of 100 days since onset of symptoms, where reported) was 89.8% for IgG (95% CI 88.5 to 90.9; 253 evaluations, 16,846 samples, 14,183 cases), 92.9% for IgG or IgM combined (95% CI 91.0 to 94.4; 108 evaluations, 3571 samples, 3206 cases) and 94.3% for total antibodies (95% CI 92.8 to 95.5; 58 evaluations, 7063 samples, 6652 cases). Average sensitivities for IgM alone followed a similar pattern but were of a lower test accuracy in every time slot. Average specificities were consistently high and precise, particularly for pre-pandemic samples which provide the least biased estimates of specificity (ranging from 98.6% for IgM to 99.8% for total antibodies). Subgroup analyses suggested small differences in sensitivity and specificity by test technology however heterogeneity in study results, timing of sample collection, and smaller sample numbers in some groups made comparisons difficult. For IgG, CLIAs were the most sensitive (convalescent-phase infection) and specific (pre-pandemic samples) compared to both ELISAs and LFAs (P < 0.001 for differences across test methods). The antigen(s) used (whether from the Spike-protein or nucleocapsid) appeared to have some effect on average sensitivity in the first weeks after onset but there was no clear evidence of an effect during convalescent-phase infection. Investigations of test performance by brand showed considerable variation in sensitivity between tests, and in results between studies evaluating the same test. For tests that were evaluated in 200 or more samples, the lower bound of the 95% CI for sensitivity was 90% or more for only a small number of tests (IgG, n = 5; IgG or IgM, n = 1; total antibodies, n = 4). More test brands met the MHRA minimum criteria for specificity of 98% or above (IgG, n = 16; IgG or IgM, n = 5; total antibodies, n = 7). Seven assays met the specified criteria for both sensitivity and specificity. In a low-prevalence (2%) setting, where antibody testing is used to diagnose COVID-19 in people with symptoms but who have had a negative PCR test, we would anticipate that 1 (1 to 2) case would be missed and 8 (5 to 15) would be falsely positive in 1000 people undergoing IgG or IgM testing in week three after onset of SARS-CoV-2 infection. In a seroprevalence survey, where prevalence of prior infection is 50%, we would anticipate that 51 (46 to 58) cases would be missed and 6 (5 to 7) would be falsely positive in 1000 people having IgG tests during the convalescent phase (21 to 100 days post-symptom onset or post-positive PCR) of SARS-CoV-2 infection. AUTHORS' CONCLUSIONS: Some antibody tests could be a useful diagnostic tool for those in whom molecular- or antigen-based tests have failed to detect the SARS-CoV-2 virus, including in those with ongoing symptoms of acute infection (from week three onwards) or those presenting with post-acute sequelae of COVID-19. However, antibody tests have an increasing likelihood of detecting an immune response to infection as time since onset of infection progresses and have demonstrated adequate performance for detection of prior infection for sero-epidemiological purposes. The applicability of results for detection of vaccination-induced antibodies is uncertain.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Anticuerpos Antivirales , Inmunoglobulina G , Vacunas contra la COVID-19 , Pandemias , Estudios Seroepidemiológicos , Inmunoglobulina M
12.
Cochrane Database Syst Rev ; 7: CD013705, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35866452

RESUMEN

BACKGROUND: Accurate rapid diagnostic tests for SARS-CoV-2 infection would be a useful tool to help manage the COVID-19 pandemic. Testing strategies that use rapid antigen tests to detect current infection have the potential to increase access to testing, speed detection of infection, and inform clinical and public health management decisions to reduce transmission. This is the second update of this review, which was first published in 2020. OBJECTIVES: To assess the diagnostic accuracy of rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. Sources of heterogeneity investigated included setting and indication for testing, assay format, sample site, viral load, age, timing of test, and study design. SEARCH METHODS: We searched the COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) on 08 March 2021. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions. SELECTION CRITERIA: We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen tests. We included evaluations of single applications of a test (one test result reported per person) and evaluations of serial testing (repeated antigen testing over time). Reference standards for presence or absence of infection were any laboratory-based molecular test (primarily reverse transcription polymerase chain reaction (RT-PCR)) or pre-pandemic respiratory sample. DATA COLLECTION AND ANALYSIS: We used standard screening procedures with three people. Two people independently carried out quality assessment (using the QUADAS-2 tool) and extracted study results. Other study characteristics were extracted by one review author and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test, and pooled data using the bivariate model. We investigated heterogeneity by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. MAIN RESULTS: We included 155 study cohorts (described in 166 study reports, with 24 as preprints). The main results relate to 152 evaluations of single test applications including 100,462 unique samples (16,822 with confirmed SARS-CoV-2). Studies were mainly conducted in Europe (101/152, 66%), and evaluated 49 different commercial antigen assays. Only 23 studies compared two or more brands of test. Risk of bias was high because of participant selection (40, 26%); interpretation of the index test (6, 4%); weaknesses in the reference standard for absence of infection (119, 78%); and participant flow and timing 41 (27%). Characteristics of participants (45, 30%) and index test delivery (47, 31%) differed from the way in which and in whom the test was intended to be used. Nearly all studies (91%) used a single RT-PCR result to define presence or absence of infection. The 152 studies of single test applications reported 228 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies, with consistently high specificities. Average sensitivity was higher in symptomatic (73.0%, 95% CI 69.3% to 76.4%; 109 evaluations; 50,574 samples, 11,662 cases) compared to asymptomatic participants (54.7%, 95% CI 47.7% to 61.6%; 50 evaluations; 40,956 samples, 2641 cases). Average sensitivity was higher in the first week after symptom onset (80.9%, 95% CI 76.9% to 84.4%; 30 evaluations, 2408 cases) than in the second week of symptoms (53.8%, 95% CI 48.0% to 59.6%; 40 evaluations, 1119 cases). For those who were asymptomatic at the time of testing, sensitivity was higher when an epidemiological exposure to SARS-CoV-2 was suspected (64.3%, 95% CI 54.6% to 73.0%; 16 evaluations; 7677 samples, 703 cases) compared to where COVID-19 testing was reported to be widely available to anyone on presentation for testing (49.6%, 95% CI 42.1% to 57.1%; 26 evaluations; 31,904 samples, 1758 cases). Average specificity was similarly high for symptomatic (99.1%) or asymptomatic (99.7%) participants. We observed a steady decline in summary sensitivities as measures of sample viral load decreased. Sensitivity varied between brands. When tests were used according to manufacturer instructions, average sensitivities by brand ranged from 34.3% to 91.3% in symptomatic participants (20 assays with eligible data) and from 28.6% to 77.8% for asymptomatic participants (12 assays). For symptomatic participants, summary sensitivities for seven assays were 80% or more (meeting acceptable criteria set by the World Health Organization (WHO)). The WHO acceptable performance criterion of 97% specificity was met by 17 of 20 assays when tests were used according to manufacturer instructions, 12 of which demonstrated specificities above 99%. For asymptomatic participants the sensitivities of only two assays approached but did not meet WHO acceptable performance standards in one study each; specificities for asymptomatic participants were in a similar range to those observed for symptomatic people. At 5% prevalence using summary data in symptomatic people during the first week after symptom onset, the positive predictive value (PPV) of 89% means that 1 in 10 positive results will be a false positive, and around 1 in 5 cases will be missed. At 0.5% prevalence using summary data for asymptomatic people, where testing was widely available and where epidemiological exposure to COVID-19 was suspected, resulting PPVs would be 38% to 52%, meaning that between 2 in 5 and 1 in 2 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. AUTHORS' CONCLUSIONS: Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. Assays that meet appropriate performance standards, such as those set by WHO, could replace laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. However, they are more suitable for use as triage to RT-PCR testing. The variable sensitivity of antigen tests means that people who test negative may still be infected. Many commercially available rapid antigen tests have not been evaluated in independent validation studies. Evidence for testing in asymptomatic cohorts has increased, however sensitivity is lower and there is a paucity of evidence for testing in different settings. Questions remain about the use of antigen test-based repeat testing strategies. Further research is needed to evaluate the effectiveness of screening programmes at reducing transmission of infection, whether mass screening or targeted approaches including schools, healthcare setting and traveller screening.


Asunto(s)
COVID-19 , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Pandemias , Sistemas de Atención de Punto , SARS-CoV-2 , Sensibilidad y Especificidad
13.
Health Technol Assess ; 26(30): 1-160, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35781133

RESUMEN

BACKGROUND: Since changes in the national guidance in 2011, prophylactic antibiotics for women undergoing caesarean section are recommended prior to skin incision, rather than after the baby's umbilical cord has been clamped. Evidence from randomised controlled trials conducted outside the UK has shown that this reduces maternal infectious morbidity; however, the prophylactic antibiotics also cross the placenta, meaning that babies are exposed to them around the time of birth. Antibiotics are known to affect the gut microbiota of the babies, but the long-term effects of exposure to high-dose broad-spectrum antibiotics around the time of birth on allergy and immune-related diseases are unknown. OBJECTIVES: We aimed to examine whether or not in-utero exposure to antibiotics immediately prior to birth compared with no pre-incisional antibiotic exposure increases the risk of (1) asthma and (2) eczema in children born by caesarean section. DESIGN: This was a controlled interrupted time series study. SETTING: The study took place in primary and secondary care. PARTICIPANTS: Children born in the UK during 2006-18 delivered by caesarean section were compared with a control cohort delivered vaginally. INTERVENTIONS: In-utero exposure to antibiotics immediately prior to birth. MAIN OUTCOME MEASURES: Asthma and eczema in children in the first 5 years of life. Additional secondary outcomes, including other allergy-related conditions, autoimmune diseases, infections, other immune system-related diseases and neurodevelopmental conditions, were also assessed. DATA SOURCES: The Health Improvement Network (THIN) and the Clinical Practice Research Datalink (CPRD) primary care databases and the Hospital Episode Statistics (HES) database. Previously published linkage strategies were adapted to link anonymised data on mothers and babies in these databases. Duplicate practices contributing to both THIN and the CPRD databases were removed to create a THIN-CPRD data set. RESULTS: In the THIN-CPRD and HES data sets, records of 515,945 and 3,945,351 mother-baby pairs were analysed, respectively. The risk of asthma was not significantly higher in children born by caesarean section exposed to pre-incision antibiotics than in children whose mothers received post-cord clamping antibiotics, with an incidence rate ratio of 0.91 (95% confidence interval 0.78 to 1.05) for diagnosis of asthma in primary care and an incidence rate ratio of 1.05 (95% confidence interval 0.99 to 1.11) for asthma resulting in a hospital admission. We also did not find an increased risk of eczema, with an incidence rate ratio of 0.98 (95% confidence interval 0.94 to1.03) and an incidence rate ratio of 0.96 (95% confidence interval 0.71 to 1.29) for diagnosis in primary care and hospital admissions, respectively. LIMITATIONS: It was not possible to ascertain the exposure to pre-incision antibiotics at an individual level. The maximum follow-up of children was 5 years. CONCLUSIONS: There was no evidence that the policy change from post-cord clamping to pre-incision prophylactic antibiotics for caesarean sections during 2006-18 had an impact on the incidence of asthma and eczema in early childhood in the UK. FUTURE WORK: There is a need for further research to investigate if pre-incision antibiotics have any impact on developing asthma and other allergy and immune-related conditions in older children. STUDY REGISTRATION: This study is registered as researchregistry3736. FUNDING: This project was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 26, No. 30. See the NIHR Journals Library website for further project information.


WHAT WAS THE QUESTION?: Women giving birth by caesarean section are at risk of developing infections (such as wound infections) and are offered antibiotics at the time of their operation to reduce this risk. In 2011, the national guidelines changed from recommending antibiotics after cord clamping to giving them before the operation to further reduce the risk of maternal infection. During birth, the newborn gut is colonised by microbes. Antibiotics given to the mother before caesarean section can reach the baby through the placenta and disrupt the normal microbes that colonise the gut. These microbes are believed to play a role in the development of the immune system and altering the normal development of these microbes has been linked to children developing allergic conditions, such as asthma and eczema. This study investigated whether or not giving antibiotics before the caesarean section had a longer-term impact on children's health. WHAT DID WE DO?: We used routine NHS information already collected by hospitals and general practitioners about women who gave birth in the UK between 2006 and 2018, and their children. We compared the risk of asthma, eczema and other health conditions in the first 5 years after birth in children born by caesarean section before and after the change in hospital policies. We also compared their health with children born vaginally. WHAT DID WE FIND?: We found that there was no increased risk of asthma or eczema for children born by caesarean section after the policy decision in 2011 to give the mother antibiotics before the operation. WHAT DOES THIS MEAN?: The study findings provide further evidence for the current recommendation to give preventative antibiotics to women shortly before the caesarean section to reduce the overall risk of infections after birth.


Asunto(s)
Antibacterianos , Profilaxis Antibiótica , Asma , Cesárea , Eccema , Hipersensibilidad , Antibacterianos/efectos adversos , Asma/epidemiología , Cesárea/efectos adversos , Niño , Preescolar , Eccema/epidemiología , Registros Electrónicos de Salud , Femenino , Humanos , Hipersensibilidad/epidemiología , Estudios Longitudinales , Embarazo , Reino Unido
14.
Cochrane Database Syst Rev ; 7: CD011964, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35879201

RESUMEN

BACKGROUND: Ovarian cancer (OC) has the highest case fatality rate of all gynaecological cancers. Diagnostic delays are caused by non-specific symptoms. Existing systematic reviews have not comprehensively covered tests in current practice, not estimated accuracy separately in pre- and postmenopausal women, or used inappropriate meta-analytic methods. OBJECTIVES: To establish the accuracy of combinations of menopausal status, ultrasound scan (USS) and biomarkers for the diagnosis of ovarian cancer in pre- and postmenopausal women and compare the accuracy of different test combinations. SEARCH METHODS: We searched CENTRAL, MEDLINE (Ovid), Embase (Ovid), five other databases and three trial registries from 1991 to 2015 and MEDLINE (Ovid) and Embase (Ovid) form June 2015 to June 2019. We also searched conference proceedings from the European Society of Gynaecological Oncology, International Gynecologic Cancer Society, American Society of Clinical Oncology and Society of Gynecologic Oncology, ZETOC and Conference Proceedings Citation Index (Web of Knowledge). We searched reference lists of included studies and published systematic reviews. SELECTION CRITERIA: We included cross-sectional diagnostic test accuracy studies evaluating single tests or comparing two or more tests, randomised trials comparing two or more tests, and studies validating multivariable models for the diagnosis of OC investigating test combinations, compared with a reference standard of histological confirmation or clinical follow-up in women with a pelvic mass (detected clinically or through USS) suspicious for OC. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed quality using QUADAS-2. We used the bivariate hierarchical model to indirectly compare tests at commonly reported thresholds in pre- and postmenopausal women separately. We indirectly compared tests across all thresholds and estimated sensitivity at fixed specificities of 80% and 90% by fitting hierarchical summary receiver operating characteristic (HSROC) models in pre- and postmenopausal women separately. MAIN RESULTS: We included 59 studies (32,059 women, 9545 cases of OC). Two tests evaluated the accuracy of a combination of menopausal status and USS findings (IOTA Logistic Regression Model 2 (LR2) and the Assessment of Different NEoplasias in the adneXa model (ADNEX)); one test evaluated the accuracy of a combination of menopausal status, USS findings and serum biomarker CA125 (Risk of Malignancy Index (RMI)); and one test evaluated the accuracy of a combination of menopausal status and two serum biomarkers (CA125 and HE4) (Risk of Ovarian Malignancy Algorithm (ROMA)). Most studies were at high or unclear risk of bias in participant, reference standard, and flow and timing domains. All studies were in hospital settings. Prevalence was 16% (RMI, ROMA), 22% (LR2) and 27% (ADNEX) in premenopausal women and 38% (RMI), 45% (ROMA), 52% (LR2) and 55% (ADNEX) in postmenopausal women. The prevalence of OC in the studies was considerably higher than would be expected in symptomatic women presenting in community-based settings, or in women referred from the community to hospital with a suspicion of OC. Studies were at high or unclear applicability because presenting features were not reported, or USS was performed by experienced ultrasonographers for RMI, LR2 and ADNEX. The higher sensitivity and lower specificity observed in postmenopausal compared to premenopausal women across all index tests and at all thresholds may reflect highly selected patient cohorts in the included studies. In premenopausal women, ROMA at a threshold of 13.1 (± 2), LR2 at a threshold to achieve a post-test probability of OC of 10% and ADNEX (post-test probability 10%) demonstrated a higher sensitivity (ROMA: 77.4%, 95% CI 72.7% to 81.5%; LR2: 83.3%, 95% CI 74.7% to 89.5%; ADNEX: 95.5%, 95% CI 91.0% to 97.8%) compared to RMI (57.2%, 95% CI 50.3% to 63.8%). The specificity of ROMA and ADNEX were lower in premenopausal women (ROMA: 84.3%, 95% CI 81.2% to 87.0%; ADNEX: 77.8%, 95% CI 67.4% to 85.5%) compared to RMI 92.5% (95% CI 90.3% to 94.2%). The specificity of LR2 was comparable to RMI (90.4%, 95% CI 84.6% to 94.1%). In postmenopausal women, ROMA at a threshold of 27.7 (± 2), LR2 (post-test probability 10%) and ADNEX (post-test probability 10%) demonstrated a higher sensitivity (ROMA: 90.3%, 95% CI 87.5% to 92.6%; LR2: 94.8%, 95% CI 92.3% to 96.6%; ADNEX: 97.6%, 95% CI 95.6% to 98.7%) compared to RMI (78.4%, 95% CI 74.6% to 81.7%). Specificity of ROMA at a threshold of 27.7 (± 2) (81.5, 95% CI 76.5% to 85.5%) was comparable to RMI (85.4%, 95% CI 82.0% to 88.2%), whereas for LR2 (post-test probability 10%) and ADNEX (post-test probability 10%) specificity was lower (LR2: 60.6%, 95% CI 50.5% to 69.9%; ADNEX: 55.0%, 95% CI 42.8% to 66.6%). AUTHORS' CONCLUSIONS: In specialist healthcare settings in both premenopausal and postmenopausal women, RMI has poor sensitivity. In premenopausal women, ROMA, LR2 and ADNEX offer better sensitivity (fewer missed cancers), but for ROMA and ADNEX this is off-set by a decrease in specificity and increase in false positives. In postmenopausal women, ROMA demonstrates a higher sensitivity and comparable specificity to RMI. ADNEX has the highest sensitivity in postmenopausal women, but reduced specificity. The prevalence of OC in included studies is representative of a highly selected referred population, rather than a population in whom referral is being considered. The comparative accuracy of tests observed here may not be transferable to non-specialist settings. Ultimately health systems need to balance accuracy and resource implications to identify the most suitable test.


Asunto(s)
Neoplasias Ováricas , Biomarcadores , Carcinoma Epitelial de Ovario , Estudios Transversales , Femenino , Humanos , Menopausia , Neoplasias Ováricas/diagnóstico por imagen , Sensibilidad y Especificidad
15.
Cochrane Database Syst Rev ; 6: CD009276, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35665911

RESUMEN

BACKGROUND: Worldwide, many countries have adopted colorectal cancer (CRC) screening programmes, often based on faecal occult blood tests (FOBTs). CRC screening aims to detect advanced neoplasia (AN), which is defined as CRC or advanced adenomas. FOBTs fall into two categories based on detection technique and the detected blood component: qualitative guaiac-based FOBTs (gFOBTs) and faecal immunochemical tests (FITs), which can be qualitative and quantitative. Screening with gFOBTs reduces CRC-related mortality. OBJECTIVES: To compare the diagnostic test accuracy of gFOBT and FIT screening for detecting advanced colorectal neoplasia in average-risk individuals. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, BIOSIS Citation Index, Science Citation Index Expanded, and Google Scholar. We searched the reference lists and PubMed-related articles of included studies to identify additional studies. SELECTION CRITERIA: We included prospective and retrospective studies that provided the number of true positives, false positives, false negatives, and true negatives for gFOBTs, FITs, or both, with colonoscopy as reference standard. We excluded case-control studies. We included studies in which all participants underwent both index test and reference standard ("reference standard: all"), and studies in which only participants with a positive index test underwent the reference standard while participants with a negative test were followed for at least one year for development of interval carcinomas ("reference standard: positive"). The target population consisted of asymptomatic, average-risk individuals undergoing CRC screening. The target conditions were CRC and advanced neoplasia (advanced adenomas and CRC combined). DATA COLLECTION AND ANALYSIS: Two review authors independently screened and selected studies for inclusion. In case of disagreement, a third review author made the final decision. We used the Rutter and Gatsonis hierarchical summary receiver operating characteristic model to explore differences between tests and identify potential sources of heterogeneity, and the bivariate hierarchical model to estimate sensitivity and specificity at common thresholds: 10 µg haemoglobin (Hb)/g faeces and 20 µg Hb/g faeces. We performed indirect comparisons of the accuracy of the two tests and direct comparisons when both index tests were evaluated in the same population. MAIN RESULTS: We ran the initial search on 25 June 2019, which yielded 63 studies for inclusion. We ran a top-up search on 14 September 2021, which yielded one potentially eligible study, currently awaiting classification. We included a total of 33 "reference standard: all" published articles involving 104,640 participants. Six studies evaluated only gFOBTs, 23 studies evaluated only FITs, and four studies included both gFOBTs and FITs. The cut-off for positivity of FITs varied between 2.4 µg and 50 µg Hb/g faeces. For each Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 domain, we assessed risk of bias as high in less than 20% of studies. The summary curve showed that FITs had a higher discriminative ability than gFOBTs for AN (P < 0.001) and CRC (P = 0.004). For the detection of AN, the summary sensitivity of gFOBTs was 15% (95% confidence interval (CI) 12% to 20%), which was significantly lower than FITs at both 10 µg and 20 µg Hb/g cut-offs with summary sensitivities of 33% (95% CI 27% to 40%; P < 0.001) and 26% (95% CI 21% to 31%, P = 0.002), respectively. Results were simulated in a hypothetical cohort of 10,000 screening participants with 1% CRC prevalence and 10% AN prevalence. Out of 1000 participants with AN, gFOBTs missed 850, while FITs missed 670 (10 µg Hb/g cut-off) and 740 (20 µg Hb/g cut-off). No significant differences in summary specificity for AN detection were found between gFOBTs (94%; 95% CI 92% to 96%), and FITs at 10 µg Hb/g cut-off (93%; 95% CI 90% to 95%) and at 20 µg Hb/g cut-off (97%; 95% CI 95% to 98%). So, among 9000 participants without AN, 540 were offered (unnecessary) colonoscopy with gFOBTs compared to 630 (10 µg Hb/g) and 270 (20 µg Hb/g) with FITs. Similarly, for the detection of CRC, the summary sensitivity of gFOBTs, 39% (95% CI 25% to 55%), was significantly lower than FITs at 10 µg and 20 µg Hb/g cut-offs: 76% (95% CI 57% to 88%: P = 0.001) and 65% (95% CI 46% to 80%; P = 0.035), respectively. So, out of 100 participants with CRC, gFOBTs missed 61, and FITs missed 24 (10 µg Hb/g) and 35 (20 µg Hb/g). No significant differences in summary specificity for CRC were found between gFOBTs (94%; 95% CI 91% to 96%), and FITs at the 10 µg Hb/g cut-off (94%; 95% CI 87% to 97%) and 20 µg Hb/g cut-off (96%; 95% CI 91% to 98%). So, out of 9900 participants without CRC, 594 were offered (unnecessary) colonoscopy with gFOBTs versus 594 (10 µg Hb/g) and 396 (20 µg Hb/g) with FITs. In five studies that compared FITs and gFOBTs in the same population, FITs showed a higher discriminative ability for AN than gFOBTs (P = 0.003). We included a total of 30 "reference standard: positive" studies involving 3,664,934 participants. Of these, eight were gFOBT-only studies, 18 were FIT-only studies, and four studies combined both gFOBTs and FITs. The cut-off for positivity of FITs varied between 5 µg to 250 µg Hb/g faeces. For each QUADAS-2 domain, we assessed risk of bias as high in less than 20% of studies. The summary curve showed that FITs had a higher discriminative ability for detecting CRC than gFOBTs (P < 0.001). The summary sensitivity for CRC of gFOBTs, 59% (95% CI 55% to 64%), was significantly lower than FITs at the 10 µg Hb/g cut-off, 89% (95% CI 80% to 95%; P < 0.001) and the 20 µg Hb/g cut-off, 89% (95% CI 85% to 92%; P < 0.001). So, in the hypothetical cohort with 100 participants with CRC, gFOBTs missed 41, while FITs missed 11 (10 µg Hb/g) and 11 (20 µg Hb/g). The summary specificity of gFOBTs was 98% (95% CI 98% to 99%), which was higher than FITs at both 10 µg and 20 µg Hb/g cut-offs: 94% (95% CI 92% to 95%; P < 0.001) and 95% (95% CI 94% to 96%; P < 0.001), respectively. So, out of 9900 participants without CRC, 198 were offered (unnecessary) colonoscopy with gFOBTs compared to 594 (10 µg Hb/g) and 495 (20 µg Hb/g) with FITs. At a specificity of 90% and 95%, FITs had a higher sensitivity than gFOBTs. AUTHORS' CONCLUSIONS: FITs are superior to gFOBTs in detecting AN and CRC in average-risk individuals. Specificity of both tests was similar in "reference standard: all" studies, whereas specificity was significantly higher for gFOBTs than FITs in "reference standard: positive" studies. However, at pre-specified specificities, the sensitivity of FITs was significantly higher than gFOBTs.


Asunto(s)
Adenoma , Neoplasias Colorrectales , Adenoma/diagnóstico , Neoplasias Colorrectales/diagnóstico , Detección Precoz del Cáncer/métodos , Guayaco , Hemoglobinas , Humanos , Sangre Oculta , Estudios Prospectivos , Estudios Retrospectivos , Sensibilidad y Especificidad
16.
BMJ ; 377: e069704, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35580876

RESUMEN

OBJECTIVE: To investigate the impact on child health up to age 5 years of a policy to use antibiotic prophylaxis for caesarean section before incision compared with after cord clamping. DESIGN: Observational controlled interrupted time series study. SETTING: UK primary and secondary care. PARTICIPANTS: 515 945 children born in 2006-18 with linked maternal records and registered with general practices contributing to two UK primary care databases (The Health Improvement Network and Clinical Practice Research Datalink), and 7 147 884 children with linked maternal records in the Hospital Episode Statistics database covering England, of which 3 945 351 were linked to hospitals that reported the year of policy change to administer prophylactic antibiotics for caesarean section before incision rather than after cord clamping. INTERVENTION: Fetal exposure to antibiotics shortly before birth (using pre-incision antibiotic policy as proxy) compared with no exposure. MAIN OUTCOME MEASURES: The primary outcomes were incidence rate ratios of asthma and eczema in children born by caesarean section when pre-incision prophylactic antibiotics were recommended compared with those born when antibiotics were administered post-cord clamping, adjusted for temporal changes in the incidence rates in children born vaginally. RESULTS: Prophylactic antibiotics administered before incision for caesarean section compared with after cord clamping were not associated with a significantly higher risk of asthma (incidence rate ratio 0.91, 95% confidence interval 0.78 to 1.05) or eczema (0.98, 0.94 to 1.03), including asthma and eczema resulting in hospital admission (1.05, 0.99 to 1.11 and 0.96, 0.71 to 1.29, respectively), up to age 5 years. CONCLUSIONS: This study found no evidence of an association between pre-incision prophylactic antibiotic use and risk of asthma and eczema in early childhood in children born by caesarean section.


Asunto(s)
Profilaxis Antibiótica , Cesárea , Antibacterianos/uso terapéutico , Profilaxis Antibiótica/efectos adversos , Asma/epidemiología , Cesárea/métodos , Preescolar , Constricción , Eccema/epidemiología , Registros Electrónicos de Salud , Femenino , Humanos , Estudios Longitudinales , Embarazo , Infección de la Herida Quirúrgica/prevención & control , Reino Unido/epidemiología
17.
Cochrane Database Syst Rev ; 5: CD013639, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575286

RESUMEN

BACKGROUND: Our March 2021 edition of this review showed thoracic imaging computed tomography (CT) to be sensitive and moderately specific in diagnosing COVID-19 pneumonia. This new edition is an update of the review. OBJECTIVES: Our objectives were to evaluate the diagnostic accuracy of thoracic imaging in people with suspected COVID-19; assess the rate of positive imaging in people who had an initial reverse transcriptase polymerase chain reaction (RT-PCR) negative result and a positive RT-PCR result on follow-up; and evaluate the accuracy of thoracic imaging for screening COVID-19 in asymptomatic individuals. The secondary objective was to assess threshold effects of index test positivity on accuracy. SEARCH METHODS: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, The Stephen B. Thacker CDC Library, and repositories of COVID-19 publications through to 17 February 2021. We did not apply any language restrictions. SELECTION CRITERIA: We included diagnostic accuracy studies of all designs, except for case-control, that recruited participants of any age group suspected to have COVID-19. Studies had to assess chest CT, chest X-ray, or ultrasound of the lungs for the diagnosis of COVID-19, use a reference standard that included RT-PCR, and report estimates of test accuracy or provide data from which we could compute estimates. We excluded studies that used imaging as part of the reference standard and studies that excluded participants with normal index test results. DATA COLLECTION AND ANALYSIS: The review authors independently and in duplicate screened articles, extracted data and assessed risk of bias and applicability concerns using QUADAS-2. We presented sensitivity and specificity per study on paired forest plots, and summarized pooled estimates in tables. We used a bivariate meta-analysis model where appropriate. MAIN RESULTS: We included 98 studies in this review. Of these, 94 were included for evaluating the diagnostic accuracy of thoracic imaging in the evaluation of people with suspected COVID-19. Eight studies were included for assessing the rate of positive imaging in individuals with initial RT-PCR negative results and positive RT-PCR results on follow-up, and 10 studies were included for evaluating the accuracy of thoracic imaging for imagining asymptomatic individuals. For all 98 included studies, risk of bias was high or unclear in 52 (53%) studies with respect to participant selection, in 64 (65%) studies with respect to reference standard, in 46 (47%) studies with respect to index test, and in 48 (49%) studies with respect to flow and timing. Concerns about the applicability of the evidence to: participants were high or unclear in eight (8%) studies; index test were high or unclear in seven (7%) studies; and reference standard were high or unclear in seven (7%) studies. Imaging in people with suspected COVID-19 We included 94 studies. Eighty-seven studies evaluated one imaging modality, and seven studies evaluated two imaging modalities. All studies used RT-PCR alone or in combination with other criteria (for example, clinical signs and symptoms, positive contacts) as the reference standard for the diagnosis of COVID-19. For chest CT (69 studies, 28285 participants, 14,342 (51%) cases), sensitivities ranged from 45% to 100%, and specificities from 10% to 99%. The pooled sensitivity of chest CT was 86.9% (95% confidence interval (CI) 83.6 to 89.6), and pooled specificity was 78.3% (95% CI 73.7 to 82.3). Definition for index test positivity was a source of heterogeneity for sensitivity, but not specificity. Reference standard was not a source of heterogeneity. For chest X-ray (17 studies, 8529 participants, 5303 (62%) cases), the sensitivity ranged from 44% to 94% and specificity from 24 to 93%. The pooled sensitivity of chest X-ray was 73.1% (95% CI 64. to -80.5), and pooled specificity was 73.3% (95% CI 61.9 to 82.2). Definition for index test positivity was not found to be a source of heterogeneity. Definition for index test positivity and reference standard were not found to be sources of heterogeneity. For ultrasound of the lungs (15 studies, 2410 participants, 1158 (48%) cases), the sensitivity ranged from 73% to 94% and the specificity ranged from 21% to 98%. The pooled sensitivity of ultrasound was 88.9% (95% CI 84.9 to 92.0), and the pooled specificity was 72.2% (95% CI 58.8 to 82.5). Definition for index test positivity and reference standard were not found to be sources of heterogeneity. Indirect comparisons of modalities evaluated across all 94 studies indicated that chest CT and ultrasound gave higher sensitivity estimates than X-ray (P = 0.0003 and P = 0.001, respectively). Chest CT and ultrasound gave similar sensitivities (P=0.42). All modalities had similar specificities (CT versus X-ray P = 0.36; CT versus ultrasound P = 0.32; X-ray versus ultrasound P = 0.89). Imaging in PCR-negative people who subsequently became positive For rate of positive imaging in individuals with initial RT-PCR negative results, we included 8 studies (7 CT, 1 ultrasound) with a total of 198 participants suspected of having COVID-19, all of whom had a final diagnosis of COVID-19. Most studies (7/8) evaluated CT. Of 177 participants with initially negative RT-PCR who had positive RT-PCR results on follow-up testing, 75.8% (95% CI 45.3 to 92.2) had positive CT findings. Imaging in asymptomatic PCR-positive people For imaging asymptomatic individuals, we included 10 studies (7 CT, 1 X-ray, 2 ultrasound) with a total of 3548 asymptomatic participants, of whom 364 (10%) had a final diagnosis of COVID-19. For chest CT (7 studies, 3134 participants, 315 (10%) cases), the pooled sensitivity was 55.7% (95% CI 35.4 to 74.3) and the pooled specificity was 91.1% (95% CI 82.6 to 95.7). AUTHORS' CONCLUSIONS: Chest CT and ultrasound of the lungs are sensitive and moderately specific in diagnosing COVID-19. Chest X-ray is moderately sensitive and moderately specific in diagnosing COVID-19. Thus, chest CT and ultrasound may have more utility for ruling out COVID-19 than for differentiating SARS-CoV-2 infection from other causes of respiratory illness. The uncertainty resulting from high or unclear risk of bias and the heterogeneity of included studies limit our ability to confidently draw conclusions based on our results.


Asunto(s)
COVID-19 , COVID-19/diagnóstico por imagen , Humanos , SARS-CoV-2 , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X , Ultrasonografía
18.
Cochrane Database Syst Rev ; 5: CD013665, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35593186

RESUMEN

BACKGROUND: COVID-19 illness is highly variable, ranging from infection with no symptoms through to pneumonia and life-threatening consequences. Symptoms such as fever, cough, or loss of sense of smell (anosmia) or taste (ageusia), can help flag early on if the disease is present. Such information could be used either to rule out COVID-19 disease, or to identify people who need to go for COVID-19 diagnostic tests. This is the second update of this review, which was first published in 2020. OBJECTIVES: To assess the diagnostic accuracy of signs and symptoms to determine if a person presenting in primary care or to hospital outpatient settings, such as the emergency department or dedicated COVID-19 clinics, has COVID-19. SEARCH METHODS: We undertook electronic searches up to 10 June 2021 in the University of Bern living search database. In addition, we checked repositories of COVID-19 publications. We used artificial intelligence text analysis to conduct an initial classification of documents. We did not apply any language restrictions. SELECTION CRITERIA: Studies were eligible if they included people with clinically suspected COVID-19, or recruited known cases with COVID-19 and also controls without COVID-19 from a single-gate cohort. Studies were eligible when they recruited people presenting to primary care or hospital outpatient settings. Studies that included people who contracted SARS-CoV-2 infection while admitted to hospital were not eligible. The minimum eligible sample size of studies was 10 participants. All signs and symptoms were eligible for this review, including individual signs and symptoms or combinations. We accepted a range of reference standards. DATA COLLECTION AND ANALYSIS: Pairs of review authors independently selected all studies, at both title and abstract, and full-text stage. They resolved any disagreements by discussion with a third review author. Two review authors independently extracted data and assessed risk of bias using the QUADAS-2 checklist, and resolved disagreements by discussion with a third review author. Analyses were restricted to prospective studies only. We presented sensitivity and specificity in paired forest plots, in receiver operating characteristic (ROC) space and in dumbbell plots. We estimated summary parameters using a bivariate random-effects meta-analysis whenever five or more primary prospective studies were available, and whenever heterogeneity across studies was deemed acceptable. MAIN RESULTS: We identified 90 studies; for this update we focused on the results of 42 prospective studies with 52,608 participants. Prevalence of COVID-19 disease varied from 3.7% to 60.6% with a median of 27.4%. Thirty-five studies were set in emergency departments or outpatient test centres (46,878 participants), three in primary care settings (1230 participants), two in a mixed population of in- and outpatients in a paediatric hospital setting (493 participants), and two overlapping studies in nursing homes (4007 participants). The studies did not clearly distinguish mild COVID-19 disease from COVID-19 pneumonia, so we present the results for both conditions together. Twelve studies had a high risk of bias for selection of participants because they used a high level of preselection to decide whether reverse transcription polymerase chain reaction (RT-PCR) testing was needed, or because they enrolled a non-consecutive sample, or because they excluded individuals while they were part of the study base. We rated 36 of the 42 studies as high risk of bias for the index tests because there was little or no detail on how, by whom and when, the symptoms were measured. For most studies, eligibility for testing was dependent on the local case definition and testing criteria that were in effect at the time of the study, meaning most people who were included in studies had already been referred to health services based on the symptoms that we are evaluating in this review. The applicability of the results of this review iteration improved in comparison with the previous reviews. This version has more studies of people presenting to ambulatory settings, which is where the majority of assessments for COVID-19 take place. Only three studies presented any data on children separately, and only one focused specifically on older adults. We found data on 96 symptoms or combinations of signs and symptoms. Evidence on individual signs as diagnostic tests was rarely reported, so this review reports mainly on the diagnostic value of symptoms. Results were highly variable across studies. Most had very low sensitivity and high specificity. RT-PCR was the most often used reference standard (40/42 studies). Only cough (11 studies) had a summary sensitivity above 50% (62.4%, 95% CI 50.6% to 72.9%)); its specificity was low (45.4%, 95% CI 33.5% to 57.9%)). Presence of fever had a sensitivity of 37.6% (95% CI 23.4% to 54.3%) and a specificity of 75.2% (95% CI 56.3% to 87.8%). The summary positive likelihood ratio of cough was 1.14 (95% CI 1.04 to 1.25) and that of fever 1.52 (95% CI 1.10 to 2.10). Sore throat had a summary positive likelihood ratio of 0.814 (95% CI 0.714 to 0.929), which means that its presence increases the probability of having an infectious disease other than COVID-19. Dyspnoea (12 studies) and fatigue (8 studies) had a sensitivity of 23.3% (95% CI 16.4% to 31.9%) and 40.2% (95% CI 19.4% to 65.1%) respectively. Their specificity was 75.7% (95% CI 65.2% to 83.9%) and 73.6% (95% CI 48.4% to 89.3%). The summary positive likelihood ratio of dyspnoea was 0.96 (95% CI 0.83 to 1.11) and that of fatigue 1.52 (95% CI 1.21 to 1.91), which means that the presence of fatigue slightly increases the probability of having COVID-19. Anosmia alone (7 studies), ageusia alone (5 studies), and anosmia or ageusia (6 studies) had summary sensitivities below 50% but summary specificities over 90%. Anosmia had a summary sensitivity of 26.4% (95% CI 13.8% to 44.6%) and a specificity of 94.2% (95% CI 90.6% to 96.5%). Ageusia had a summary sensitivity of 23.2% (95% CI 10.6% to 43.3%) and a specificity of 92.6% (95% CI 83.1% to 97.0%). Anosmia or ageusia had a summary sensitivity of 39.2% (95% CI 26.5% to 53.6%) and a specificity of 92.1% (95% CI 84.5% to 96.2%). The summary positive likelihood ratios of anosmia alone and anosmia or ageusia were 4.55 (95% CI 3.46 to 5.97) and 4.99 (95% CI 3.22 to 7.75) respectively, which is just below our arbitrary definition of a 'red flag', that is, a positive likelihood ratio of at least 5. The summary positive likelihood ratio of ageusia alone was 3.14 (95% CI 1.79 to 5.51). Twenty-four studies assessed combinations of different signs and symptoms, mostly combining olfactory symptoms. By combining symptoms with other information such as contact or travel history, age, gender, and a local recent case detection rate, some multivariable prediction scores reached a sensitivity as high as 90%. AUTHORS' CONCLUSIONS: Most individual symptoms included in this review have poor diagnostic accuracy. Neither absence nor presence of symptoms are accurate enough to rule in or rule out the disease. The presence of anosmia or ageusia may be useful as a red flag for the presence of COVID-19. The presence of cough also supports further testing. There is currently no evidence to support further testing with PCR in any individuals presenting only with upper respiratory symptoms such as sore throat, coryza or rhinorrhoea. Combinations of symptoms with other readily available information such as contact or travel history, or the local recent case detection rate may prove more useful and should be further investigated in an unselected population presenting to primary care or hospital outpatient settings. The diagnostic accuracy of symptoms for COVID-19 is moderate to low and any testing strategy using symptoms as selection mechanism will result in both large numbers of missed cases and large numbers of people requiring testing. Which one of these is minimised, is determined by the goal of COVID-19 testing strategies, that is, controlling the epidemic by isolating every possible case versus identifying those with clinically important disease so that they can be monitored or treated to optimise their prognosis. The former will require a testing strategy that uses very few symptoms as entry criterion for testing, the latter could focus on more specific symptoms such as fever and anosmia.


Asunto(s)
Ageusia , COVID-19 , Faringitis , Anciano , Ageusia/complicaciones , Anosmia/diagnóstico , Anosmia/etiología , Inteligencia Artificial , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Niño , Tos/etiología , Disnea , Fatiga/etiología , Fiebre/diagnóstico , Fiebre/etiología , Hospitales , Humanos , Pacientes Ambulatorios , Atención Primaria de Salud , Estudios Prospectivos , SARS-CoV-2 , Sensibilidad y Especificidad
19.
Cochrane Database Syst Rev ; 3: CD013208, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35266555

RESUMEN

BACKGROUND: Viral load (VL) testing in people living with HIV (PLHIV) helps to monitor antiretroviral therapy (ART). VL is still largely tested using central laboratory-based platforms, which have long test turnaround times and involve sophisticated equipment. VL tests with point-of-care (POC) platforms capable of being used near the patient are potentially easy to use, give quick results, are cost-effective, and could replace central or reference VL testing platforms. OBJECTIVES: To estimate the diagnostic accuracy of POC tests to detect high viral load levels in PLHIV attending healthcare facilities. SEARCH METHODS: We searched eight electronic databases using standard, extensive Cochrane search methods, and did not use any language, document type, or publication status limitations. We also searched the reference lists of included studies and relevant systematic reviews, and consulted an expert in the field from the World Health Organization (WHO) HIV Department for potentially relevant studies. The latest search was 23 November 2020. SELECTION CRITERIA: We included any primary study that compared the results of a VL test with a POC platform to that of a central laboratory-based reference test to detect high viral load in PLHIV on HIV/AIDS care or follow-up. We included all forms of POC tests for VL as defined by study authors, regardless of the healthcare facility in which the test was conducted. We excluded diagnostic case-control studies with healthy controls and studies that did not provide sufficient data to create the 2 × 2 tables to calculate sensitivity and specificity. We did not limit our study inclusion to age, gender, or geographical setting. DATA COLLECTION AND ANALYSIS: Two review authors independently screened the titles, abstracts, and full texts of the search results to identify eligible articles. They also independently extracted data using a standardized data extraction form and conducted risk of bias assessment using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Using participants as the unit of analysis, we fitted simplified univariable models for sensitivity and specificity separately, employing a random-effects model to estimate the summary sensitivity and specificity at the current and commonly reported World Health Organization (WHO) threshold (≥ 1000 copies/mL). The bivariate models did not converge to give a model estimate. MAIN RESULTS: We identified 18 studies (24 evaluations, 10,034 participants) defining high viral loads at main thresholds ≥ 1000 copies/mL (n = 20), ≥ 5000 copies/mL (n = 1), and ≥ 40 copies/mL (n = 3). All evaluations were done on samples from PLHIV retrieved from routine HIV/AIDS care centres or health facilities. For clinical applicability, we included 14 studies (20 evaluations, 8659 participants) assessing high viral load at the clinical threshold of ≥ 1000 copies/mL in the meta-analyses. Of these, sub-Saharan Africa, Europe, and Asia contributed 16, three, and one evaluation respectively. All included participants were on ART in only nine evaluations; in the other 11 evaluations the proportion of participants on ART was either partial or not clearly stated. Thirteen evaluations included adults only (n = 13), five mixed populations of adults and children, whilst in the remaining two the age of included populations was not clearly stated. The majority of evaluations included commercially available tests (n = 18). Ten evaluations were POC VL tests conducted near the patient in a peripheral or onsite laboratory, whilst the other 10 were evaluations of POC VL tests in a central or reference laboratory setting. The test types evaluated as POC VL tests included Xpert HIV-1 Viral Load test (n = 8), SAMBA HIV-1 Semi-Q Test (n = 9), Alere Q NAT prototype assay for HIV-1 (n = 2) and m-PIMA HIV-1/2 Viral Load test (n = 1). The majority of evaluations (n = 17) used plasma samples, whilst the rest (n = 3) utilized whole blood samples. Pooled sensitivity (95% confidence interval (CI)) of POC VL at a threshold of ≥ 1000 copies/mL was 96.6% (94.8 to 97.8) (20 evaluations, 2522 participants), and pooled specificity (95% CI) was 95.7% (90.8 to 98.0) (20 evaluations, 6137 participants). Median prevalence for high viral load (≥ 1000 copies/mL) (n = 20) was 33.4% (range 6.9% to 88.5%). Limitations The risk of bias was mostly assessed as unclear across the four domains due to incomplete reporting. AUTHORS' CONCLUSIONS: We found POC VL to have high sensitivity and high specificity for the diagnosis of high HIV viral load in PLHIV attending healthcare facilities at a clinical threshold of ≥ 1000 copies/mL.


Asunto(s)
Infecciones por VIH , Sistemas de Atención de Punto , Adulto , Niño , Infecciones por VIH/diagnóstico , Instituciones de Salud , Humanos , Sensibilidad y Especificidad , Pruebas Serológicas , Carga Viral
20.
BMJ ; 376: e066871, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197270

RESUMEN

OBJECTIVES: To investigate the proportion of lateral flow tests (LFTs) that produce negative results in those with a high risk of infectiousness from SARS-CoV-2, to investigate the impact of the stage and severity of disease, and to compare predictions made by influential mathematical models with findings of empirical studies. DESIGN: Linked data analysis combining empirical evidence of the accuracy of the Innova LFT, the probability of positive viral culture or transmission to secondary cases, and the distribution of viral loads of SARS-CoV-2 in individuals in different settings. SETTING: Testing of individuals with symptoms attending NHS Test-and-Trace centres across the UK, residents without symptoms attending municipal mass testing centres in Liverpool, and students without symptoms screened at the University of Birmingham. PARTICIPANTS: Evidence for the sensitivity of the Innova LFT, based on 70 individuals with SARS-CoV-2 and LFT results. Infectiousness was based on viral culture rates on 246 samples (176 people with SARS-CoV-2) and secondary cases among 2 474 066 contacts; distributions of cycle threshold (Ct) values from 231 497 index individuals attending NHS Test-and-Trace centres; 70 people with SARS-CoV-2 detected in Liverpool and 62 people with SARS-CoV-2 in Birmingham (54 imputed). MAIN OUTCOME MEASURES: The predicted proportions who were missed by LFT and viral culture positive and missed by LFT and sources of secondary cases, in each of the three settings. Predictions were compared with those made by mathematical models. RESULTS: The analysis predicted that of those with a viral culture positive result, Innova would miss 20% attending an NHS Test-and-Trace centre, 29% without symptoms attending municipal mass testing, and 81% attending university screen testing without symptoms, along with 38%, 47%, and 90% of sources of secondary cases. In comparison, two mathematical models underestimated the numbers of missed infectious individuals (8%, 10%, and 32% in the three settings for one model, whereas the assumptions from the second model made it impossible to miss an infectious individual). Owing to the paucity of usable data, the inputs to the analyses are from limited sources. CONCLUSIONS: The proportion of infectious people with SARS-CoV-2 missed by LFTs is substantial enough to be of clinical importance. The proportion missed varied between settings because of different viral load distributions and is likely to be highest in those without symptoms. Key models have substantially overestimated the sensitivity of LFTs compared with empirical data. An urgent need exists for additional robust well designed and reported empirical studies from intended use settings to inform evidence based policy.


Asunto(s)
Prueba Serológica para COVID-19/normas , COVID-19/epidemiología , Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , Reacciones Falso Negativas , Reacciones Falso Positivas , Humanos , Pandemias , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , SARS-CoV-2 , Sensibilidad y Especificidad , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...